Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

نویسندگان

  • Xing-Hua Li
  • Cai-Ling Xu
  • Xiang-Hua Han
  • Liang Qiao
  • Tao Wang
  • Fa-Shen Li
چکیده

Nearly monodisperse cobalt ferrite (CoFe2O4) nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid-solid-solution (LSS) process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to: Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4 Nanoparticles Through a Simple Hydrothermal Condition

The grant number of the National Natural Science Foundation of China should be ‘‘10774061,’’ not ‘‘50602020’’ as appeared in the published paper. Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

متن کامل

NANO EXPRESS Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4 Nanoparticles Through a Simple Hydrothermal Condition

Nearly monodisperse cobalt ferrite (CoFe2O4) nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS) process. Magn...

متن کامل

Synthesis of Magnesium Ferrite-Silver Nanostructures and Investigation of its Photo-catalyst and Magnetic Properties

In this research we first synthesized MgFe2O4 nanostructures via hydrothermal method using (Mg(NO₃)₂.6H₂O) and (Fe(NO₃)₃.9H₂O). The influence of concentration, surfactant, precipitating agent and temperature on the particle size and magnetic properties of the synthesised nanoparticles were examined. Then MgFe2O4-Ag nanocomposites were prepared by a simple chemical precipitation. The structural ...

متن کامل

Lithium Disilicate (Li2Si2O5): Mild Condition Hydrothermal Synthesis, Characterization and Optical Properties

Lithium disilicate nano-powders were synthesized via a mild condition hydrothermal reaction at 180 ºC for 48 and 72 h with a non stoichiometric1:2 Li:Si molar ratio in NaOH aqueous solution using Li2CO3 and SiO2.H2O as raw materials. The synthesized materials were characterized by powder X-ray diffraction (PXRD) technique and Fourier transform infrared (FTIR) spectroscopy. The XRD data showed t...

متن کامل

Self-templated and self-assembled synthesis of nano/microstructures of Gd-based rare-earth compounds: morphology control, magnetic and luminescence properties.

Nearly monodisperse NaGdF(4) and GdF(3) nanowires/nanorods as well as GdBO(3) microplates/microflowers have been successfully prepared by a designed chemical conversion approach using Gd(OH)(3) nanowires/nanorods as precursors via a facile hydrothermal approach. The Gd(OH)(3) nanowires/nanorods precursors were prepared through a simple hydrothermal process, which then served as sacrificial temp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010